当前位置: 首页 > news >正文

深圳龙岗网站建设培训学校用什么做网站最好

深圳龙岗网站建设培训学校,用什么做网站最好,上海模板建站源码,东莞是什么网站建设目录Cursor简介下载地址#xff1a;使用技巧#xff1a;CHAT:example 1#xff1a;注意#xff1a;example 2#xff1a;Github Copilot官网简介以插件方式安装pycharm自动写代码example 1#xff1a;写一个mysql取数据的类example 2#xff1a;写一个多重共线性检测的类… 目录Cursor简介下载地址使用技巧CHAT:example 1注意example 2Github Copilot官网简介以插件方式安装pycharm自动写代码example 1写一个mysql取数据的类example 2写一个多重共线性检测的类总结Cursor 简介 Cursor is an editor made for programming with AI. It’s early days, but right now Cursor can help you with a few things… Write: Generate 10-100 lines of code with an AI that’s smarter than CopilotDiff: Ask the AI to edit a block of code, see only proposed changesChat: ChatGPT-style interface that understands your current fileAnd more: ask to fix lint errors, generate tests/comments on hover, etc 下载地址 https://www.cursor.so/ 使用技巧 https://twitter.com/amanrsanger CHAT: example 1 注意 对于上面最后一张图的中的代码如果直接在IDE里面运行是不会报错的但是有一句代码 vif[VIF] [variance_inflation_factor(df.values, i) for i in range(df.shape[1]-1)]是不符合多重共线性分析或者VIF的数学原理的。因为VIF是对自变量间线性关系的分析如果直接调用OLS如果把OLS里面的目标函数换成非线性方程就是表达的非线性关系。而上面的代码是把df.values都传入了variance_inflation_factor函数包括了自变量和因变量因此是不符合多重共线性分析原理的。 所以应改成 import pandas as pddata {x1: [1, 2, 3, 4, 5],x2: [2, 4, 6, 8, 10],x3: [3, 6, 9, 12, 15],y: [2, 4, 6, 8, 10]}df pd.DataFrame(data)from statsmodels.stats.outliers_influence import variance_inflation_factor# Get the VIF for each feature vif pd.DataFrame() vif[feature] df.columns[:-1] # vif[VIF] [variance_inflation_factor(df.values, i) for i in range(df.shape[1]-1)] vif[VIF] [variance_inflation_factor(df.values[:, :-1], i) for i in range(df.shape[1]-1)]# Print the results print(vif)原理解释 def variance_inflation_factor(exog, exog_idx):Variance inflation factor, VIF, for one exogenous variableThe variance inflation factor is a measure for the increase of thevariance of the parameter estimates if an additional variable, given byexog_idx is added to the linear regression. It is a measure formulticollinearity of the design matrix, exog.One recommendation is that if VIF is greater than 5, then the explanatoryvariable given by exog_idx is highly collinear with the other explanatoryvariables, and the parameter estimates will have large standard errorsbecause of this.Parameters----------exog : {ndarray, DataFrame}design matrix with all explanatory variables, as for example used inregressionexog_idx : intindex of the exogenous variable in the columns of exogReturns-------floatvariance inflation factorNotes-----This function does not save the auxiliary regression.See Also--------xxx : class for regression diagnostics TODO: does not exist yetReferences----------https://en.wikipedia.org/wiki/Variance_inflation_factork_vars exog.shape[1]exog np.asarray(exog)x_i exog[:, exog_idx]mask np.arange(k_vars) ! exog_idxx_noti exog[:, mask]r_squared_i OLS(x_i, x_noti).fit().rsquaredvif 1. / (1. - r_squared_i)return vifexample 2 GPT-4太大写不了给出的是调GPT-2的示例代码。 Github Copilot 官网 https://github.com/features/copilot 简介 GitHub Copilot uses the OpenAI Codex to suggest code and entire functions in real-time, right from your editor.Trained on billions of lines of code, GitHub Copilot turns natural language prompts into coding suggestions across dozens of languages.Don’t fly solo Developers all over the world use GitHub Copilot to code faster, focus on business logic over boilerplate, and do what matters most: building great software.Focus on solving bigger problems Spend less time creating boilerplate and repetitive code patterns, and more time on what matters: building great software. Write a comment describing the logic you want and GitHub Copilot will immediately suggest code to implement the solution.Get AI-based suggestions, just for you GitHub Copilot shares recommendations based on the project’s context and style conventions. Quickly cycle through lines of code, complete function suggestions, and decide which to accept, reject, or edit.Code confidently in unfamiliar territory Whether you’re working in a new language or framework, or just learning to code, GitHub Copilot can help you find your way. Tackle a bug, or learn how to use a new framework without spending most of your time spelunking through the docs or searching the web. 目前有个人版、商业版和教育版三种教育版里面学生账户比教师账户的免费功能更多只需要一个学校邮箱和一卡通就可以认证学生账户或者教师账户还是很方便。 以插件方式安装 pycharm 自动写代码 以下代码除了第一行注释都是copilot自动补全的 example 1写一个mysql取数据的类 # 写一个mysql取数据的类 import pymysql class Mysql:def __init__(self,host,user,password,database,port3306):self.host hostself.user userself.password passwordself.database databaseself.port portself.conn pymysql.connect(hostself.host,userself.user,passwordself.password,databaseself.database,portself.port)self.cursor self.conn.cursor()def fetchone(self,sql):self.cursor.execute(sql)return self.cursor.fetchone()def fetchall(self,sql):self.cursor.execute(sql)return self.cursor.fetchall()def close(self):self.cursor.close()self.conn.close()def commit(self):self.conn.commit()def rollback(self):self.conn.rollback()def execute(self,sql):self.cursor.execute(sql)self.commit()def executemany(self,sql,values):self.cursor.executemany(sql,values)self.commit() example 2写一个多重共线性检测的类 from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score class Multicollinearity:def __init__(self,df):self.df dfdef get_vif(self):vif pd.DataFrame()vif[VIF Factor] [self.get_vif_score(i) for i in range(self.df.shape[1])]vif[features] self.df.columnsreturn vifdef get_vif_score(self,i):y self.df.iloc[:,i]x self.df.drop(self.df.columns[i],axis1)lr LinearRegression()lr.fit(x,y)r2 r2_score(y,lr.predict(x))return 1/(1-r2)总结 用工具自动写代码的时候最好要用实际例子或实际数据检查一下就算没有报错对于数值计算最好也要debug跑一遍看它生成的代码是否符合你的描述或者数学原理。具体原因见上文的注意。
http://www.dnsts.com.cn/news/138214.html

相关文章:

  • 沈阳科技网站建设中学网站建设书
  • 建筑网站建设赏析wordpress用图床好还是
  • 网站内容页怎么设计seo营销课程培训
  • 网站建设需要企业提供哪些素材大理石在哪些网站做宣传
  • 网站结构化数据黄聪wordpress
  • 微信网站开发制作公司网站代码优化的方法
  • 网站开发工具 下载营销型网站什么意思
  • 长沙专业网站制作旺道优化软件
  • 吴江网站优化互联网网站案例
  • 白熊阅读做网站架构没有营业执照可以建设网站
  • 杭州网站专业制作手机网站效果图做多大的
  • 网站建设维护合同模板seo排名软件怎么做
  • 福建住房和城建设网站管城网站建设
  • 免费招聘网站招聘wordpress support hls player
  • 陕西省建设厅网站官网企业月报互联网是做什么的
  • 网站美工建设软件下载seo高清视频教程
  • 做兼职网站有哪些南京网站建
  • 网站建设我们的优势网站常见的域名
  • 手机网站一定要与pc网站一样网站排名优化推广
  • 网站建设客户需求调查表珠海市官网网站建设品牌
  • 网站制作报价被哪些因素影响一级a做爰片免费网站国语
  • 太原市网站建设tp5 网站开发
  • 南京html5网站建设四川省建设厅网站证
  • 遵义专业建站网站开发技术课程设计说明书
  • 个人站长网站需要注册公司吗平顶山做网站推广
  • 个人网站有哪些站网页设计与制作教程第二版答案
  • 做网站什么码表白网站建设
  • 无锡网站推广公司排名佛山外贸建站公司
  • 免费网站站长推广开发公司安全管理制度
  • 印刷 网站模板百度风云榜游戏排行榜